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Abstract
A specialized formulation of Azarbayejani and Pentland's
framework for recursive recovery of motion, structure and
focal length from feature correspondences tracked through
an image sequence is presented. The specialized formula-
tion addresses the case where all tracked points lie on a
plane. This planarity constraint reduces the dimension of
the original state vector, and consequently the number of
feature points needed to estimate the state. Experiments
with synthetic data and real imagery illustrate the system
performance. The experiments confirm that the specialized
formulation provides improved accuracy, stability to ob-
servation noise, and rate of convergence in estimation for
the case where the tracked points lie on a plane.

1 Introduction
Inferring 3D structure and motion from 2D image se-
quences has been a central problem in computer vision for
many years. Many early studies focused on methods of re-
lating pixel coordinates to 3D coordinates via camera cali-
bration [22], that is computing the projection matrix which
relates image coordinates to a world coordinate frame. In
recent years, the focus has shifted to non-metric recon-
struction from uncalibrated cameras [9], by computing the
fundamental matrix (two views) [12], and the trilinear ten-
sor (three views) [16]. Also, different camera models were
assumed; i.e., orthographic [20, 23], perspective projection
[11, 25], or a unified model [1, 15].

Structure and motion algorithms typically assume given
correspondences between features in successive frames.
Finding such correspondences in a reliable way is a prob-
lem that still occupies researchers in the field. The most
common approaches used to solve this problem are meth-
ods based on optical flow [8, 13] and methods based on
feature matching [21, 26]. In flow-based methods, a veloc-
ity vector is computed for each pixel in the region of inter-
est using variational techniques. In feature-based methods,
image features such as points and lines are extracted in the
first frame and are then matched to corresponding features
in successive frames using correlation and relaxation tech-
niques. In both types of methods it is typically assumed
that the intensity of an image point, given a small motion
between successive frames, will remain constant.

When dealing with a sequence of images, as with any se-
quence of observations, there are two possible frameworks
to consider for parameter estimation. In a batch framework
[14], observations from all frames are used simultaneously

to estimate the state. In a recursive framework [3, 1, 17, 2]
the current estimate, based on previous frames, together
with new observations from the current frame yield a new
state estimate. A batch framework is more suitable when
all the information is available ahead of time, while a re-
cursive framework is more suitable for real-time systems.

Algorithms for recovering structure and motion have
many practical applications, such as reverse engineering,
virtual reality, movie special effects, computer aided de-
sign, image compression, etc. Most of these algorithms
are general in the sense that they assume no prior knowl-
edge about the scene. However, in practice, the scene typi-
cally contains structures with strong geometric regularities.
In particular, lines and planes occur frequently in real im-
agery and in very particular orientations [19]. Planar sur-
faces are quite common in both indoor and outdoor envi-
ronments. Planar man-made structures such as table tops,
floors, walls as well as buildings, roads, pavements, and
playgrounds occur frequently in real image sequences.

1.1 New Approach

The goal in this paper is to reformulate the general recur-
sive framework for pointwise structure recovery, in such a
way that it takes into account a planarity constraint. This
reformulation results in a smaller state vector, and conse-
quently in a more accurate and stable system. The formu-
lation is based upon the extended Kalman filter (EKF) ap-
proach originally proposed in [1]. Experiments with syn-
thetic data and real imagery will be used to illustrate the
system performance. The experiments confirm that the
specialized formulation provides improved accuracy, sta-
bility to observation noise, and rate of convergence in esti-
mation for the case where the tracked points lie on a plane.

Although two views analyses of planar structure were
carried out in [10, 25, 6], these algorithms are known to
be sensitive to measurement noise. More recently, Szeliski
and Torr [19] showed how the quality of reconstruction can
be improved via use of planarity constraints. In addition,
Dellaert, et al. [4] demonstrated planar structure recovery
through the inclusion of texture maps in an EKF measure-
ment model; however, this approach assumed that the plane
in the initial frame was front-facing. The approach pro-
posed in this paper models planar structure explicitly and
does not make any assumption about the initial orientation
of the plane with respect to the camera.
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2 Background
In this section we give a brief overview of a recursive esti-
mation framework (EKF) to recover motion, structure and
focal length from a sequence of images, given correspon-
dences of feature points between frames. The formulation
is due to Azarbayejani and Pentland [1], and will serve as
the basis our new formulation for planar structure recovery.

In this formulation, state vector of the EKF consists of
7+N parameters, three for translation, three for incremen-
tal rotation, one for camera focal length, and N for depth
of the feature points. The state vector is written as follows:

x = (tX ; tY ; tZ�; !X ; !Y ; !Z ; �; �1; � � � ; �N ) (1)

where � is the inverse focal length, (tX ; tY ; tZ�) is the rel-
ative translational motion, and (!X ; !Y ; !Z) describes the
incremental rotational motion. Finally, point-wise struc-
ture is given by the subvector (�1; � � � ; �N ), where �i is
the depth associated with the ith feature point. Depth is
expressed relative to the coordinate system of the camera
in the first frame. Note that depth can be recovered up to
a scale factor only; therefore, it is customary to fix one of
the �i for purposes of gaining a solution [1].

It should be noted that rotation is formulated in terms of
the incremental rotation quaternion:

�q = (
p
1� �; !X=2; !Y =2; !Z=2) (2)

� = (!X
2 + !Y

2 + !Z
2)=4: (3)

¿From the unit incremental rotation quaternion �q, the
global rotation matrix R can be computed as described in
[1]. This gives the relative rotation between the object ref-
erence frame and the current camera reference frame.

The measurement vector of the EKF is given by

z = (u1; v1; u2; v2; � � � ; uN ; vN ) (4)

where (ui; vi) is the image location of the ith feature point,
and i = 1::N where N is the number of features. Thus, the
measurement vector of the EKF consists of 2N parameters.

The following equations capture the geometry of the
problem [1]. The first equation, relates the 3-D location
of a single point (X;Y; Z) to its 2-D image location in the
first frame (u1; v1):0

@ X
Y
Z

1
A =

0
@ u1

v1

0

1
A+ �

0
@ u1�

v1�
1

1
A ; (5)

where � is the depth (or structure), and � = 1=f is the
inverse focal length.

The coordinate frame transformation between the first
frame and the current frame is formulated as:0
@ XC

YC
ZC�

1
A =

0
@ tX

tY
tZ�

1
A+

0
@ 1

1
�

1
AR

0
@ X

Y
Z

1
A ;

(6)

where R is the rotation matrix and (tX ; tY ; tZ�)
T is the

translation, as described above.
Finally, the camera model for central projection is for-

mulated as follows:�
uk

vk

�
=

�
XC

YC

�
1

1 + ZC�
; (7)

where the coordinate system origin is fixed at the image
plane, rather than at the center of projection.

The measurement equation for the EKF is obtained by
combining the Eqs. 5, 6, and 7. For more details see [1].

A known weakness of this formulation is that it assumes
that the image coordinates at the first frame are correct, an
assumption that in theory biases the results, but has very
small effect in practice. A possible remedy to this problem
can be found in [2].

The computational complexity of the algorithm is cubic
with respect to the number of points. In other methods
[2] a seperate filter is run for every 3D point resulting in
a linear algorithm. However, the motion and focal length
are not modeled explicitly as part of the state, but rather
are implicit in the projection matrix which is estimated in
a separate stage.

3 Planar Structure Recovery
Given the above formulation, we can now add a constraint
for all points to lie on a single plane. The measurement
vector of the EKF remains the same, while the new state
vector becomes:

x = (tX ; tY ; tZ�; !X ; !Y ; !Z ; �;NX ; NY ; NZ): (8)

The state now consists of only 7 + 3 = 10 parameters,
the first seven parameters are as in the original formula-
tion, and the other three represent the plane parameters.
Of course, a plane is completely determined by three non-
collinear points, or equivalently by its unit normal (two
DOFs) and its distance from the origin (one DOF).

Note that the dimension of the new state vector is inde-
pendent of the number of features points. We expect that
as the number of feature points grows larger, our estimator
will out-perform the previous estimator since the latter's
dimension grows with the number of feature points.

If the points lie on a plane then they satisfy the plane
equation:

N �X = 1 (9)

where X = (X;Y; Z) is the 3-D point location and N =
(NX ; NY ; NZ) is the plane (non-unit) normal, and the dis-
tance of the plane from the origin is given by d = jjN jj�1.

Rearranging 9 we get:

Z =
1�NXX �NY Y

NZ

: (10)
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Since � = Z, we can rewrite Eq. 5 using Eq. 10 :

0
@ X

Y
Z

1
A =

0
@ u1

v1

0

1
A+

1�NXX �NY Y

NZ

0
@ u1�

v1�
1

1
A :

(11)
Rearranging 11 to solve for (X;Y; Z) we get:

0
@ X

Y
Z

1
A = �

0
@ (NZ + �)u1

(NZ + �)v1

1�NXu
1 �NY v

1

1
A ; (12)

where � = 1=(NXu
1� +NY v

1� +NZ).
As in the original formulation, the dynamic model in the

EKF can be chosen trivially as an identity transform plus
noise. The measurement model is given by Eqs. 12, 6,
and 7. For derivation of the measurement Jacobian, see
Appendix 5. Note that depth can be recovered up to a
scale factor only; therefore, it is necessary to keep one of
the Ni fixed for purposes of gaining a solution.

3.1 Relation to Two Frames Analysis
In this section, we discuss the degree of determinacy of our
system and compare it with the system presented in [1].
In general, the parameters of a system can be recovered
when the number of constraints outnumbers the degrees of
freedom, or equivalently, the number of parameters in the
system. The number of constraints in the original point-
wise structure formulation is (1 + 2N): one for scale and
2N for number of measurements (u and v coordinates of
N feature points). The number of degrees of freedom is
(6 + 1 + N) for motion, camera and structure at every
frame. So, whenever (1 + 2N) > (1 + 6 +N) or N � 7,
the motion, structure and camera can be recovered.

In our formulation, the number of constraints remains
the same, while the number of parameters to recover is re-
duced to (6 + 1 + 3) = 10 for camera motion and planar
structure at every frame. Note that this number is fixed and
does not depend on the number of feature points N . So,
whenever 1 + 2N > 10 or N � 5, the motion, camera
and planar structure can be recovered. If we work with a
normalized camera model, that is, f = 1(� = 1), then the
number of constraints increases to 2N + 2 and we can re-
cover motion and planar structure whenever N � 4. This
result coincides with the “four corner” model [7, 25] or
the “eight parameter” model [18] for esimating motion and
planar structure from two perspective views.

3.2 Motion of Multiple Planes
It is possible to extend the formulation for estimation of a
single plane to the case of multiple planes. Assume that
there are m planes. Also assume that each image feature is
assigned to its corresponding plane. In the case where the
environment is rigid (all planes undergoe same translation

and rotation), the state vector of Eq. 8 becomes:

x = (tX ; tY ; tZ�; !X ; !Y ; !Z ; �;

N1
X ; N

1
Y ; N

1
Z ; � � �Nm

X ; Nm
Y ; Nm

Z ); (13)

where the superscripts denote the ith plane parameters.
The state now consists of 7 + 3m parameters, where the
first seven parameters are as in the original formulation
and the others represent the three parameters for each of
the m planes. In this case, the translation, rotation, and fo-
cal length are the same for all planes; however, it is also
possible to formulate the state vector such that each plane
has its own, independent motion and translation.

4 Experiments
We now present two experiments for comparing our for-
mulation with the original one. Planar structure for the
original formulation is obtained by fitting a plane to the
recovered 3D points.

In the first experiment we evaluate system performance
with different noise levels, in a synthetic data setup simi-
lar to that used by [1]. The test sequence consists of 100
frames. The camera motion is predetermined for the entire
sequence, and corresponds to a rotation about the y-axis lo-
cated at (0; 0; 2). The true focal length is set to one, � = 1
and the true structure consists of some 30 points uniformly
scattered on a plane, with a fixed (non-unit) normal direc-
tion (NX ; NY ; NZ) = 2( 1p

3
; 0; 1). The initial motion pa-

rameter estimates are set to zero, with variances zero. The
initial inverse focal length is set to 0.5, with variance 0.1.
The components of the plane normal direction are set to
(1.5, 0.5, 2) with variances (0.1, 0.1, 0). In each trial, uni-
form noise with varying standard deviation is added to both
x and y image coordinates. The standard deviation corre-
sponds to 2, 6, and 10 pixels, based on an image size of
(512,512).

Fig. 1 illustates recovery of planar structure, camera mo-
tion, and focal length for the three noise levels. Multiple
trials (twenty at each noise level) were conducted, and the
average estimates were plotted on the graphs. Parameters
tX , q0, NX , and � are represented by solid lines on the
graphs; tZ�, NY q2 are represented by broken lines. To
avoid clutter in the graphs we do not show tY , q1, q2, and
NZ .

Table 1 shows a summary of statistics for the experi-
ment. As can be seen in both the graphs and the table,
the new formulation converges faster to the planar structure
and camera parameter estimates. In addition, the new for-
mulation tends to be more stable as noise levels increase;
the mean error and variance in estimating the plane normal
and the camera parameters are both smaller when the new
formulation is employed.

3



Uniform noise �2 pixels.
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Uniform noise �6 pixels.
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Uniform noise �10 pixels.
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Figure 1: Experiment using synthetic data with random noise added. Accuracy and convergence of the new vs. old formulations was
measured against ground truth, as described in the text. Multiple trials (twenty at each noise levels) were conducted, and the average
estimates shown on the graphs. Each graph's x-axis is the frame number and the y-axis is the state variable. Parameters tX , q0, NX , and
� are represented by solid lines on the graphs; tZ�, NY q2 are represented by broken lines. To avoid clutter in the graphs we do not show
tY , q1, q2, and NZ . For a summary of statistics, see Table 1.
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Performance Statistics: New Formulation
Noise Motion Estimation Error Convergence
pixels mt �t mq �q rs rc

2 -0.0012 0.0129 -0.0037 0.0298 7 9
6 -0.0018 0.0304 0.0009 0.0584 7 14
10 -0.0033 0.0634 -0.0058 0.3352 7 19

Performance Statistics: Old Formulation
Noise Motion Estimation Error Convergence
pixels mt �t mq �q rs rc

2 0.0002 0.0325 -0.0638 0.3195 12 25
6 0.0012 0.0790 -0.0810 0.3274 14 25
10 -0.0238 0.3316 -0.2366 0.4673 >100 19

Table 1: Average performance statistics for synthetic data exper-
iments with increasing noise level. Experiments were conducted
in trials with varying uniform noise (standard deviation 2, 6, and
10 pixels). Mean error and root mean squared error are shown for
the recovered camera motion parameters (translation, rotation).
For the static parameters (structure and camera) the table provides
the frame number for which the camera parameters converge to
within 5% of the true value, and frame number for which the nor-
mal converges to within 0:5o of its true value.

Frame 1 Frame 9 Frame 16

Figure 2: Example frames from the real image sequence.
Tracked features are shown in white.

4.1 Experiments on Real Imagery: Box sequence

In this section, we describe experiments with the
BOX sequence available from the UMass database [5].
Fig. 2 shows example frames from the sequence. Cor-
ner features were tracked using an implementation of
the Kanade-Lucas-Tomasi feature tracker available from
http://vision.stanford.edu/birch/klt/. The corner features
on the front face of the box were tracked and used as mea-
surement input to both the new and old EKF formulations.
As in the previous experiments, planar structure for the
original formulation was obtained by fitting a plane to the
recovered 3D points.

Graphs showing the estimated translation, rotation,
structure, and inverse focal length for both formulations
are shown in Fig. 3. The ground truth for each translation
and rotation parameter for this sequence lies approximately
along a line [1]. As can be seen in the graphs in Fig. 3,
the estimates of camera motion obtained by the new EKF
formulation tend to converge faster. A more pronounced
difference in convergence can be seen in the estimated of
the planar structure. At the time of this writing, the au-
thors have been unable to obtain the “ground truth” for the
Box sequence. Quantitative RMS error comparisons will

New method Old method
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Figure 3: Graphs showing the estimated translation, rotation,
structure, and inverse focal length estimated in the UMass box
sequence. Features belonging to the front face of the box were
used as measurement input to the new and old EKF formulation.

be reported in the final version of the paper.

5 Conclusion
We have presented a specialization of the Azarbayejani and
Pentland feature-based recursive estimator, to the case of
planar structure. We have shown how adding this geomet-
ric constraint reduces the dimension of the state vector, and
consequently yields a more numerically stable estimator.
Since planar surfaces are quite common in man-made en-
vironments, this new formulation should prove valuable. It
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is likely that this idea of adding a geometric constraint can
be carried over to other surfaces which have the analytical
form z = f(x; y). In future work we plan to extend this
approach to the case of quadric surfaces, which also occur
frequently in many real image sequences.
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Appendix: Measurement Jacobian
Using the notation of [24], the measurement equation of
the EKF is given by

zk = h(xk; �k)

where z is the measurement vector, x is the state vector,
� is the measurement noise and superscript k is the frame
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number. The measurement function h is given by combin-
ing Eqs. 6,7, and 12. The measurement Jacobian is given
by

Hi;j =
@hi
@xk

(
�
x
k
; 0):

The partials with respect to translation are as follows:
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The partials with respect to incremental rotation are as fol-
lows:
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where j = (X;Y; Z), and
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The partials of the incremental rotation matrix with respect
to !j are as follows:
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4
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4
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4
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4
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1
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Here,  =
p
1� � and � is given in Eq. 3. Rk

�q is the in-
terframe rotation matrix and Rk

q is the global rotation ma-
trix, that is the rotation of the camera from the first frame
to the predecessor of the current frame. Rk

q is updated ev-
ery frame by multiplying the interframe and global rotation
matrices. Rk+1

q = Rk
�qR

k
q .

The partials with respect to � are:
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where
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A

and where � = 1=(NXu� +NY v� +NZ).
The partials with respect to the plane parameters are:
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The partials of 3-D position with respect to the plane pa-
rameters are:
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